Minimum coefficient rate for stationary random processes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Sampling of Random Processes: Stationary Point Processes

This is the first of a series of papers treating randomly sampled random processes. Spectral analysis of the resulting samples presupposes knowledge of the statistics of 1 t~}, the random point process whose variates represent the sampling times. We introduce a class of s ta t ionary point processes, whose s ta t ionar i ty (as characterized by any of several equivalent criteria) leads to wide-...

متن کامل

Minimum distance estimation of stationary and non-stationary ARFIMA processes

A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator is easy to compute and is consistent and asymptotically normally distributed for fractionally integrated (FI) processes with an integratio...

متن کامل

Minimum distance estimation for random coefficient autoregressive models

In this paper, we extend the minimum distance method of Beran (1993) to random coefficient autoregressive (RCA) models. After stating the necessary assumptions the asymptotic properties of the minimum distance estimator are derived. A M S classification: 62M05

متن کامل

On random coefficient INAR(1) processes

The random coefficient integer-valued autoregressive process was introduced by Zheng, Basawa, and Datta in [55]. In this paper we study the asymptotic behavior of this model (in particular, weak limits of extreme values and the growth rate of partial sums) in the case where the additive term in the underlying random linear recursion belongs to the domain of attraction of a stable law. MSC2000: ...

متن کامل

Memory-Universal Prediction of Stationary Random Processes

We consider the problem of one-step-ahead prediction of a real-valued, stationary, strongly mixing random process fXig1i= 1. The best mean-square predictor of X0 is its conditional mean given the entire infinite past fXig 1 i= 1. Given a sequence of observations X1 X2 XN , we propose estimators for the conditional mean based on sequences of parametric models of increasing memory and of increasi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information and Control

سال: 1960

ISSN: 0019-9958

DOI: 10.1016/s0019-9958(60)90949-9